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Abstract. In this paper, we present a shock capturing discontinuous Galerkin method for
nonlinear systems of conservation laws in several space dimensions and analyze its stability and
convergence. The scheme is realized as a space-time formulation in terms of entropy variables using
an entropy stable numerical flux. While being similar to the method proposed in [A. Hiltebrand
and S. Mishra, Numer. Math., 126 (2014), pp. 103-151], our approach is new in that we do not
use streamline diffusion stabilization. It is proved that an artificial viscosity-based nonlinear shock
capturing mechanism is sufficient to ensure both entropy stability and entropy consistency, and
consequently we establish convergence to an entropy measure-valued solution. The result is valid for
general systems and for the arbitrary order discontinuous Galerkin method.
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1. Introduction. The class of nonlinear systems of conservation laws contains
many important examples, such as the Euler equations and the Navier—Stokes equa-
tions. The general form of a nonlinear m-system of conservation laws in several space
dimensions is

d
Uy + Z fk(u)w,c = 0,
k=1

u(x,0) = ug(x),

(1.1)

where the unknowns u = u(x,t): R? x [0,00) — R™ are the conserved variables and
fPR™ S R™ k=1,...,d are (nonlinear) smooth flur functions with d = 1,2, 3.

The initial condition wg(x) is assumed to have compact support to avoid techni-
calities arising from boundary conditions. Using this assumption together with finite
speed of propagation in hyperbolic problems, one may assume that the solution u(z, t)
has compact support for any finite time ¢ and vanishes for |z| large.

It is well known that (1.1) can produce shocks and discontinuities in finite time;
hence the solution cannot be interpreted in the classical sense. This motivates one to
introduce the concept of weak solution which is defined as a bounded function u that
satisfies (1.1) in a distributional sense, i.e.,

oo d
k —
12 [ ] e+ 3w en ) drdi+ [ (). o(e.0) dz =0

k=1
for all functions ¢ € (C°(R? x [0,00)) )™. Here the notation (u,w) denotes the inner
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product between vectors uw and v in the state space R™. Also we will use the notation
a-b as the notation for the inner product of vectors a and b in the physical space R%.

In order to single out the physically admissible solutions we require solution u to
satisfy the entropy inequality condition

d
(1.3) Uy + Y F*(u)y, <0
k=1

in the distributional sense for all entropy flux U(u): R™ — R and associated entropy
flux functions F¥(u): R™ — R for k = 1,...,d. Here U is convex and (U, F) sat-
isfy the compatibility condition 8, F¥(u) = 0,U(w)dyf"(u). By defining entropy
variables as v = (U,)T one can recast (1.1) in symmetric form as

d
k
U Uy + Z foVz, =0
k=1

such that the matrix u, is symmetric positive definite and the matrices ff, are sym-
metric.

In general, the best a priori estimate one can get for the solutions of (1.1) is the so-
called entropy stability. This originates from the entropy inequality condition (1.3) by
integrating it over the spatial domain and considering an arbitrary time 7' combined
with compact support assumption which lead to the following global entropy inequality

19 L vwdr<o— [ Uz, 1) dz g/ U (u(z,0)) da.
dt Jga Rd Rd

This property can be viewed as the nonlinear extension of Lo stability for systems of
conservation laws and is desirable to be kept for the approximate solution u” as well.
This is the motivation behind entropy stable schemes, which were originally introduced
by Tadmor [30]. In a finite volume framework, these methods have been extended
to higher order essentially nonoscillatory (ENO) schemes very recently [10, 12]. In
the finite element context, in [18] entropy stability is constructed by adding stream-
line diffusion (SD) in a space-time formulation. Later formulations with SD and
with/without a shock capturing (SC) term are introduced in [21, 22, 28, 29]. The
extension to discontinuous Galerkin (DG) methods is presented in [20].

The above-mentioned methods are designed to satisfy the entropy stability con-
dition; however, this is not sufficient to conclude any sort of convergence for the
numerical scheme in the general case due to lack of enough a priori information on
the solution. Trying to obtain some sort of convergence leads to an even weaker no-
tion of solution, the so-called entropy measure-valued (emv) solutions. These types
of solutions, introduced by DiPerna [7], are more general than weak solutions and
permit a meaningful convergence theory for numerical schemes approximating (1.1).
We discuss this concept later in section 2.

For scalar equations, the emv solution contains the entropy weak solution as
a special case (when the initial data is a Dirac measure, see DiPerna [7]). Using
this theory, convergence to entropy weak solutions of scalar conservation laws has
been established for both continuous and discontinuous SD finite element methods
[20, 21, 22, 28, 29]. In the case of systems, convergence to an emv solution has been
proved very recently in [10] for TeCNO schemes in the finite volume context and in
[17] for an SCSD-DG method.
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On the other hand, despite the apparent need to include SD terms to control the
residual in these schemes, ideas questioning the necessity and even adequacy of linear
stabilization (e.g., SD) have gained momentum [25, 9, 14, 13]. Furthermore, while
SD stabilization is often included in the analysis of DG schemes, it is not commonly
found in practical implementations. (There is a plethora of examples, e.g., [15, 26, 4].)
Recently, Nazarov in [25] suggested a stripped-down version of the SCSD continuous
Galerkin method of [22] for scalar equations using linear (continuous) finite elements.
The formulation of [25] disregards the SD term and utilizes a residual based SC as
the only stabilization mechanism while it is proved that the approximate solution still
converges to the entropy weak solution.

In the present paper we propose a class of DG schemes for (1.1), using only a
suitable nonlinear SC term for stabilization. We will show that our method is entropy
stable and satisfies the global entropy inequality (1.4). The main goal of this paper
is to prove that uniform L., bounded solutions of the suggested scheme converge to
an emv solution of (1.1) for an arbitrary (fixed) order of polynomial approximation.

The framework presented in [17], where convergence of an SCSD-DG method was
proved, is the skeleton of this work. In the present paper we extend the result of
[17] not only by proving that we can obtain adequate residual control without using
SD stabilization, but we also use refined estimates, resulting in an SC operator using
nonlinear viscosity that is higher order small compared to [17]. This results in a less
diffusive method.

Section 2 gives a brief review on Young measures and measured-value (mv) solu-
tions which will later be used in the convergence proof. The space-time DG framework
is introduced in section 3. This section also includes the explicit forms of the numer-
ical diffusion and SC operators. In section 4 the fully discrete entropy inequality and
a bounded variation (BV) estimate are obtained and section 5 includes the proof of
convergence to an emv solution. Furthermore, in section 6 we provide some numerical
examples to show the applicability of the method. Appendix A contains the proof of
Lemmas 4.2 and 4.3.

2. emv solutions. The notion of mv solution is a generalization of the standard
distributional (weak) solution of (1.1). We follow [7] and define an mv solution of
(1.1) as a measurable map g from the physical domain R? x R, to the space of
nonnegative measures with unit mass over the state domain R™,

p:y = (z,t) € (R x Ry) = p, € Prob(R™),
which satisfies (1.1) in the following sense,
d
(2.1) [ ] e + (5 @) o) dodt =0
ReJR+ k=1
for all test functions ¢ € (C°(R? x Ry ))™. Here y and o denote the generic variables
in the space-time domain R? x R, , and state domain R™, respectively. Moreover,

the notation (g(o), ty)r denotes the expectation of function g with respect to the
probability measure p, as

9o = | g@)dm, g:R" SR,

m
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Since the system (1.1) has an entropy extension with entropy pair (U, F), p is called
an admissible (or entropy) mv solution if

d
(2:2) L oW e+ 3 oo (P @) s drat =0

k=1

for all 0 < ¢ € C°(R? x R;). The linearity of (2.1) and (2.2) with respect to p helps
prove convergence of a bounded sequence of solutions produced by a vanishing viscos-
ity method, which is a significant problem for traditional weak solutions to nonlinear
systems. The following Young’s theorem provides such an appropriate interpretation
of convergence:

THEOREM 2.1 (Theorem 2.1 of [28]). Let u; be a uniformly bounded sequence in
Loo(R? x RY), i.e., for some constant C,

sl p raxray <C, 5 =1,2,3,....

Then there exists a subsequence (again denoted) uw; and a family of measurable proba-
bility measures p,, € Prob(R™), such that suppp,, is contained in {y € R xR, |y| <C}
and the Lo, weak-+ limit,

g9(u;(-)) = g(),
exists for all continuous functions g and for almost all points y € R% x R, where
9= (py,9(0))E.

3. Space-time SC-DG formulation. Here, we introduce the shock capturing
discontinuous Galerkin (SC-DG) method for nonlinear systems of conservation laws
(1.1). A space-time framework, similar to that used in [17, 21, 22, 28, 29], is proposed
for discretization of the problem. We introduce the space-time triangulation, the
approximation space, and, in particular, the structure of the SC term.

3.1. Space-time triangulation. Adopting the compact support assumption
for the solution in a finite time interval [0, 7], we consider the space domain Q C R¢
such that suppu(-,t) C Q at each time ¢ € [0,7]. In order to discretize (1.1), let
0=ty <t1 <--- <ty =T be a sequence representing discrete time steps, and let
I, = [tn,tn41) be the corresponding time intervals. We also denote the space-time
domain and space-time slabs by Qr := Q x [0,T] and S,, := Q X I, respectively.
Moreover d' := dim(€Qr) represents the space-time dimension and clearly d' = d + 1.

We consider a subdivision 7,, = {x} of S,, into disjoint convex! finite elements.
Without loss of generality, let us assume that

h =sup h, < 00, k€ Tn,ne{0,...,N—1},

where h,; is the exterior diameter of a space-time cell k. The interior diameter of
an element (the diameter of the inscribed circle) is denoted by p,. We assume the
following quasi-uniformity condition

h
(3.1) — <o VkeT,
Pr

IThe necessity of the convexity requirement becomes clear in the approximation estimates of the
H!-projection (5.1).
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with o > 0 independent of h. The perimeter of k is defined by p, = Yecox|e|, where
le] is the d-measure of the face. The uniformity assumption (3.1) implies that (cf. [5])

1 < Prhi

3:2) P

<u Vi € Ty
for some p > 0 independent of h. Typically, £ might be a tetrahedron or a prism
defined as K x I,,, where K corresponds to a spatial triangulation on R?. Seeking
easier notation, from now on we present our formulation for prisms. Note, however,
that there is no restriction to extend this framework to tetrahedra or tilted prisms
(cf. [20] for more discussion).

Temporal trace values are denoted by w” | (z) := w”(x,t%) and to define spa-
tial trace quantities, if n is the outward normal to the spatial interface K, we set
wg, +(x,t) = lim.,o w(z £ en, t) as the associated trace values on an interface. Also
we introduce the notation [w]* := w, —w_ for the (spatial or temporal) jump values
on the cell interface.

3.2. Variational formulation. The finite dimensional space for the approxi-
mate solution is defined as

VI ={w € (La(Sn))™: wli € (Py(k))™, VK € Tp}, n=20,...,N—1,

where P, (k) is the space of polynomials of at most degree ¢ on a domain x C RY .
We also denote VI = Hi:]:_()l Vi as the approximation space in the global space-time
domain. The approximating functions are considered discontinuous both in space and
time.

The proposed SC-DG method has the following quasi-linear (nonlinear in first
argument and linear in the second one) variational form in terms of entropy variables:
Find v" € V7 such that

(3.3) B(v", w") = Bpa(v", w") + Bsc(v", w") =0 Ywh e V.

Note that we realize the functions in terms of entropy variables v which are the basic
unknowns and the dependent conservative variables are derived via mapping u(v").
In our notation, this mapping is sometimes omitted, e.g., f(v") is written rather than
Flu(oh)).

The scheme (3.3) can be seen as the stripped-down version of the method sug-
gested in [17], by disregarding the SD term which is usually added to control the
residual.

In the following we explain the details and explicit form of terms in (3.3).

3.3. DG quasi-linear form. Using the test function w" € V7 to penalize the
interior residual of the cell, jumps of temporal values and spatial flux, and applying
integration by parts leads to

d
Bpa(, wh) =— 3 / / ("), wf) + 3 (FE "), wh ) dadt
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Also we assume that the initial data vy = v"(z,0_) are obtained from a suitable
projection (e.g., La-projection or the proposed H'-projection in (5.1)) of the initial
data vo(z) = v(up(x)).

Here, f(vh) := f (v _, v y;m) denotes the (spatial) numerical flux function, a
vector-valued function of two interface states v% . and the interface normal m, which
is considered to be consistent and conservative. Also this numerical flux is supposed
to be entropy stable, i.e., following [17], we consider the spatial numerical flux in the
viscosity form as

(35) Foot) = @)~ 5D (W~ vl ),

where f*(v") = f* (v}}gf, v}}wr; n) denotes the entropy conservative flux and
D(v") := D(v}; _, vl ;n) is the required numerical diffusion matrix to obtain the
entropy stability.

For comprehensive discussion on entropy conservative and entropy stable fluxes
we refer to the seminal paper by Tadmor [31], and just mention that for a general
system of conservation law f*(v") can be written in the form

1
(3.6) ) = / f("(0)) - ndo,

0
where v"(6) is a straight line parameterization connecting the two states v}}()f and
v’;()Jr as
(3.7) () =" +0[v"]T.

Unfortunately, (3.6) does not necessarily have a closed form and is hard to cal-
culate. We refer to [31] for discussions on the practical method for obtaining entropy
conservative flux. Also we refer to [12] for explicit formulation of entropy conservative
fluxes for Euler and shallow water equations.

Moreover, we set D as a symmetric positive definite matrix with a uniform spectral
bound, i.e., there exist positive constants ¢ and C' independent of v" such that

(3.8) 0 < c(w,w) < (w, D(v")w) < Clw,w) Yw # 0.
In order to determine the diffusion operator explicitly we follow [17] and define
D(vl v in) = RoP(An)RY,.
Here, A, and R,, are eigenvalue and (scaled) eigenvector matrices of the Jacobian

matrix (f - mn), in the normal direction m, calculated at an averaged state between

v’}cf and v’}<7 + (e.g., Roe average or arithmetic average). The scaled matrix of right

eigenvectors is given as Rn = R, T such that RnRE = u,. Here, matrix P is a
nonnegative matrix that can be constructed as Roe-type or Rusanov-type [12]:
e Roe-type diffusion operator:

P(An) = dla'g(|/\l|7 R |)‘m|)7

e Rusanov-type diffusion operator:

P(An) = max(|/\1|, cees |/\m|)Im><m7

where A1, ..., A, are the eigenvalues of (f - n),,.
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It is worth mentioning that, by C (or ¢) we will denote a positive constant inde-
pendent of h, not necessarily the same at each occurrence.

3.4. SC operator. In order to stabilize the scheme in the presence of disconti-
nuities we need to add a form of artificial viscosity. We expect this operator to add
a significant stabilization effect close to discontinuities, while only a little viscosity
is added in smooth regions. In this formulation, the residual of the finite element
solution is used as a sensor for the presence of discontinuities.

Here we follow [2, 17] in introducing the SC operator as

d
(3.9) Bsc (v, wh) = Z/ / Ex <<w?,'&vvf> +Z<wrk,ﬂvvrk>> dz dt,
o I JK —

k=1
where the viscosity ¢, is defined as

B CSCRes, + he> OS5 BRes,
- Vo, + 0 '

(3.10) €x

Here, C{¢ and C5¢ are two positive constants and h? is added as the regularization
parameter with parameter 6 such that

d d
(3.11) HZmax{——%,——ag}.
Also the viscosity strength parameters o; and as are chosen such that
(3.12) aq € (0,2), ag > 0.
The rationale behind these choices for 8, a1, and as are discussed later in section 5.
It should be noted that the scaling of the viscosity coefficient (3.12) is less diffusive,
compared to ranges a1 € (0,1) and ag € (0,1/2) in [17], due to refined estimates used

in section 5.
We denote the local residual and space-time gradient as

d
(3.13) Res = u(v"); + Z F M),
k=1
(3.14) Vv = (Viv,Vgv,...,V,v)"

and we have the following definitions for the weighted cell and boundary residuals,
and the weighted gradient, respectively,

(315) TRes = / / (Res, va (0" (z, £))Res) da dt,
I, JK
BRes ::/ [u(o!)]F]? da
K

(3.16) ] <|f*(vh) - Flol ) P+ | DM ok

2
) dsdt,

d
317) Voo ;:/I /K@f,ﬂvvb+Z<vﬁk,'&vvﬁk>dxdt.
n k=1
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Here by @, we denote wy, (0y, k), and 9, is the cell average defined as

(3.18) V1= %/ /’vh(x,t)dxdt.
WK

Now the proposed SC-DG method (3.3) is well-defined. The rest of the paper
is basically devoted to the proofs of entropy stability and convergence to the emv
solution for (3.3).

4. Energy analysis. We first note that the approximate solution of (3.3) satis-
fies the global entropy inequality in the fully discrete sense. Then, by adopting some
additional assumptions, we show a weak BV-estimate.

4.1. Entropy stability. The entropy stability result is given as the following
theorem.

THEOREM 4.1 (Theorem 3.1 of [17]). Consider the system of conservation laws
(1.1), equipped with a strictly convex entropy function U and corresponding entropy
flux functions F* k =1,...,d. Furthermore, assume that the exact and approximate
solutions have compact support inside the spatial domain Q). Then, the SC-DG scheme
(3.3) approzimating (1.1) has the following properties:

(i) The scheme (3.3) is conservative in the following sense: If u = u(v™) is the

approrimate solution, then

/Qu('vh(x,tiv))dx:/u(vh(x,t(i))dx.

Q

(ii) The scheme (3.3) is entropy stable, i.e., the approzimate solution u" admits
the following fully discrete global entropy bounds,

/QU(u*(tQ))da;g/QU(u(vh(a;,tfj)))dxg/U(u(vh(x,tﬁ)))dx,

Q

where u*(tY ) is called the minimum total entropy state of the projected initial
data and is defined as

u*(t?) = ﬁ/ﬂu(i}h(x,to_)) dz.

Proof. (Sketch) The proof of this theorem is not strongly dependent on the pres-
ence of SD stabilization, and is in fact very similar to the proof presented in [17].
We give only a sketch here, mainly with the aim to introduce terms that facilitate
exposition of the material in the following. Consult [32] for a more detailed version
of the proof.

First we note that the conservation property (4.1) follows immediately from choos-
ing w" = 1 in (3.3). The second assertion is obtained by considering the following
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h

decomposition of (3.3) and inserting w" = v" in it, to prove a series of inequalities:

Bso(wh, o) > 0,
Bt = X [ [ St asa
+ Z/ (F(o"), wh _)dsdt >0,

o In JOK
ng(vh,vh):—Z/l /K<u(vh),w?>dxdt
3 /K (a0 yy )l s ) — (u(oh ) el ) da

'U/'Uhﬂj N xr — 'LL'UhZII 0 X.
z/QU(( (. tY))d /QU(( (2,£2))d

These estimates together give the upper bound in (4.1). The lower bound is obtained
exactly as in [17]. O

Now, assume that the spectral bound (3.8) holds, and there exist some constants
¢ and C independent of v", such that

(4.1) 0 < clw, w) < (w, uy (v"(z,1))w) < Clw,w) Yw # 0.

Then, we can make the inequalities of the proof of Theorem 4.1 sharper (cf. [17, 32]
for more details):

Bsc(v", v") > ngnﬂvvhﬂiz(ﬂ)’

BE) (v, v") zcz/l /K|[[v;;ﬂi|2dsdt,
BDG ot oh >C’Z/ [[ol ﬂ+|2dx+/ (v (x,tjf))dx—/U(’vh(x,t(i))da:.

Q

The global entropy inequality (4.1) together with the above inequalities implies

(42) 3l Vo0 +Z/|uv 11+|2dx+2// ] P dsdr < C(vf ),

K,n

which readily gives

(4.3) > el Vo3, ., < C

This result will be used in the later proofs. Also note that due to the conditions
(4.1) and (3.8), the weighted residual (in (3.15)) and weighted gradient (in (3.17)) are
norms equivalent to ||Res||z,(.) and ||V'vh||L2(,{), respectively.
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4.2. BV-estimate. In order to prove convergence, we require a BV-estimate for
the approximate solutions of the SC-DG method (3.3). Before reaching that point we
need to state Lemmas 4.2 and 4.3. The proofs will be presented in the appendix.

LEMMA 4.2. Let us assume that (4.1) holds and there exists a uniform spectral
upper bound for f,, i.e.,

(4.4) (w, f,w) < Cl{w,w) Yw # 0,

where C' is uniform and independent of w. Then one can find a uniform upper bound
with respect to h for
. = d +a;
(1) h')’ Zn,n Resﬂ Zf’y Z 2 s
(ii) hY Zﬂ_’n Resn||Vvh||L2(K) ifv>ar.
Moreover, these expressions vanish as h — 0, if the inequalities hold strictly.

A similar lemma can be stated for the boundary residual terms.

LEMMA 4.3. Assuming that (3.8) and (4.4) hold, one can find a uniform upper
bound with respect to h for

- d’
() W7 S, BRes, if 7> 5,
(ii) hY Zﬂ_’n BResH|\Vvh|\L2(K) if v > as.
Moreover, these expressions vanish as h — 0, if the inequalities hold strictly.

Now the BV-estimate is obtained as a corollary of Theorem 4.1, starting from
inequality (4.2).

COROLLARY 4.4. Let the assumptions of Theorem 4.1 hold and the diffusion ma-
triz D(v™") be spectrally bounded as in (3.8). Also we assume similar spectral bounded-
ness for Uy, i.e., (4.1) holds. Then the approzimate solution v" satisfies the following
weak BV-estimate:

Z/ |[[v,’;]}t|2da:+z// [l ]2 ds dt
PR PR oK

(4.5) + 0 “Resy|| V0" || Lage) + 2 Y BResy || Vo' || 1,0 < C,

K,m K,m
where C' is a positive constant dependent on the initial condition ug.

Proof. The first two terms of (4.5) are the same as (4.2). The remaining terms
can be obtained from Lemmas 4.2 and 4.3 by choosing v = a7 and v = a3 in part (ii)
of Lemmas 4.2 and 4.3, respectively. The BV-estimate follows. d

Note that the spectral boundedness of the symmetrizer u, (and consequently v,,)
as in (4.1), needs a deeper look. In [32] it is shown that this seems achievable for some
systems like shallow water equations and polytropic Euler equations by adopting some
physical constraints as well as an L., bound on the approximate solution v". This is
comparable to what Dutt [8] established for the Navier—Stokes equations.

5. Convergence analysis. In the convergence analysis of the SC-DG scheme
(3.3), first in section 5.1 the convergence of the sequence of bounded solutions to an
mv solution is proved. Then in section 5.2 the admissibility of this solution is showed
by satisfying some entropy inequality.
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5.1. Convergence to mv solution. In order to show convergence, we must
revisit and modify the proof given in [17] to account for the removal of the SD term.
Furthermore, we employ refined estimates on several occasions, which leads to the
less diffusive scaling of the SC operator (cf. (3.10) in section 3.4).

First, let us introduce an H'-projection as the connection between infinite dimen-
sional and finite dimensional spaces of the solution.

DEFINITION 5.1. The local H'-projection of ¢ € (C°(€2 x R+))m into (Pg)™ is
denoted by " and is defined as " = T, () with Uy|.: (HY(k))™ — (Py(k))™,
where for all w" € (Py(k))™ we have

(5.1a) //(Vgoh,'&,,th)dxdt:/ /(ch,ﬁvah>dxdt,
I,JK I,JK

(5.1b) //cphdxdt:/ /cpdxdt.
I,JK I,JK

Note that solving (5.1) corresponds to a discrete Neumann problem in . The
regularity of the solution of the elliptic problem and infinite differentiability of ¢ give
the following estimates [20]:

(5.2a) IV | Loty < 1Vl Loy

(5.2b) lle — @™ a) < CRTIV" @l L)
(5.2¢) e — @™ 12 (0m) < Ch'=% IVl La(x)s
(5.2d) V(e = "M 1oty £ CR IV @l o)

where r = 0,1,...,¢+ 1. Note that (5.2b) and (5.2¢) utilize H?-regularity of the solu-
tion of the Neumann problem (5.1). This requires the convexity of the triangulation

T = {K}.
Also we need the following estimates between Ly and Loo. If ¢ € (C2°(k))™, then
the following estimates hold:

&

(5.3a) lellram) < Chz[l@llra ),
&

(5.3b) el < Ch=(lellwa (v

In the following we assume that ¢ > 1 (for the case ¢ = 0 our scheme reduces to
a standard finite volume scheme for which convergence analysis is presented in [5]).
The following theory establishes the convergence to the mv solution for scheme (3.3):

THEOREM 5.2. Let v be the approzimate solution of the system (1.1) by the SC-
DG scheme (3.3). Under the assumptions of (3.8), (4.1), and

(5.4) 10" 20y < C,

the approximate solution converges to an muv solution (2.1) of the system of conser-
vation laws (1.1).

Proof. Consider {v"},~0 as the sequence of approximate solutions generated by
the SC-DG scheme (3.3). We first show that as h — 0 the approximate solution is
consistent with weak solution (1.2) in the following sense:

(5.5)

d
hrn/ / ) pr) + Z ), @z, ) dedt =0 YV € (C°(Q x (0, T)))™

h—0
=1
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The consistency (5.5) combined with Theorem 2.1, is the key to prove the weak-x
convergence to an mv solution.

Let us choose ¢ € C°(Q x (0,7))™ and ¢" = I, () (as in Definition 5.1) and
define the internal and boundary parts of the DG formulation as the following:

d

(5.6) ng) v o) Z// ), ) —|—Z cpwk ) dzx dt,

=1

. B (" dsd
(5.7) o Z/ [ (70", e s
+Z/ n+1 — SOZ,+1,—> - <’LL( Z—) QOn +>d

Using (3.4) and (3.3) we note that

(5.8) B(w", ") = BUi (v", ") + BUrd (v, o) + Bso (v, o).

To prove consistency we observe that

(5.9) / / ), Pt) +i ), Pz, ) dadt
k=1
:Z/ / ((u( —|—zd: )s Py )dxdt

k=1
= Bon) (0", " — @) — BE (v, ")
= Bor) (0", " — @) — B(o", ") + BUg? (v, o) + Bsc(v", "),

and seek to prove that (5.9) — 0 as h — 0 as does (5.5). Recall that B(v", ¢") = 0 by
definition of the SC-DG scheme in (3.3) and we refer to [17] for the proof of the limit of

B(mt)( ,@" — ) and B b"d)( ,"). Here we only discuss the last term in (5.9).
We decompose the SC term (3.9) as follows:

Bso(v", @") = BYL(v", ") + BE.(0", o)
d
(5.10) _ Z/ / 1) _|_5(2 < AT —|—Z gomk,u,,vmk ) dx dt,
In k=1

where 8,9) and 8,(3) correspond to cell and boundary residual parts in the viscosity

coefficient in (3.10), respectively. First, considering Bglé and using (4.1) yields

h Res,

(5.11) e < O
||V’U ||L2(n

Therefore, by using (5.3b) and the Cauchy—Schwarz inequality we get to

I d’ N
(5.12) BSL (0", ") < Chor Y Resel|@" |y < ChZ T Resy.

K,n K,n

Using Lemma 4.2, we find that Bglé(vh, ") vanishes as h — 0 if oy > 0.
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Similarly for B c we obtain

d/
BG (", ") < T2 BRes,..

K,n

Using Lemma 4.3 and choosing ap > 0 one can see that 8(2)( " ") vanishes as
h—0.

Owing to the L, bound on v" as in (5.4) and based on the result of Theorem
2.1, we can claim that there is a Young measure g such that

(5.13) u(v") =y, u(o)),
(5.14) FE") =y, £ o),

as h — 0. In other words unlike weak solutions, nonlinearity in u(v) or f*(v)
commutes with this new sense of convergence. This establishes the convergence we
look for; by (5.9), (5.13), and (5.14) we obtain

T d
. m
}llgnlo/o /Q<u('v )+ E )s Py dadt

k=1
d
(5.15) / @), 5. 00)+ S @) ) e = 0,
k=1

and Theorem 5.2 follows. 0

5.2. Entropy consistency. The remaining step is showing that the solution
obtained by (3.3) is admissible, i.e., satisfies (2.2). Before stating the corresponding
theorem we introduce the following super approrimation estimate or discrete commu-
tator property.

LEMMA 5.3. Let v" € V7 and ¢ is an infinitely smooth function p € C¥(k).

Then the following results hold:

(5.16) llov" = I (90" o) < C(O)RIV" ]| Loy
(5.17) [ov" — I (p0")[| Ly 0m) < CR)RY 20| 1, ()

The proof of (5.16) is a special case of the proof presented in [3] and the boundary
estimate (5.17) can be proved along the same line as (5.16).
The entropy consistency result is given as the following theorem.

THEOREM 5.4. Let v" be the approzimate solution generated by the scheme (3.3).
We assume that v" is uniformly bounded as in (5.4) and the conditions (3.8) and (4.1)
hold. Then, the limit mv solution p satisfies the entropy condition (2.2).

Proof. We follow [17] and consider an infinitely smooth nonnegative function
0<p€CX(Qx(0,T)). Also in order that vy can be inserted as the test function
in quasi-linear form B, it needs to be projected to the finite dimensional space V9.
This is done using the H'-projection operator (5.1) and results in the following two
terms,

(5.18) B(v", 11, (v"p)) = B(v", v"p) + B(v", I, (v"p) — v"p).
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As we will show, the second term, which is called the compensation term, vanishes as
h goes to zero while the first one provides us with the entropy inequality condition
(2.2).

The first term can be decomposed into naive DG and SC parts as

(5.19) B(vh, vh<p) = BDG('vh, vh<p) + BSc(vh,vhgp).

Along the same lines as in [17], one can prove that

(5.20) Bpa(v", v"p) / /U sot—I—ZFk )z, dzdt.

We do not repeat the proof here and refer to [17] for details. The SC part, using (3.9),
can be written as

d
Bscv v<p Z/ /aﬁ(vt,uvvt —I—Z zk,uvv )godxdt
In k=1
d
(5.21) —I—Z/ / €1 ( v cpt,uvvt —|—Z v cpzk,uvvzk>> dzxdt > A,
k=1

A

and similarly to (5.12) one can deduce that |A] — 0 as h — 0. From (5.19), (5.20),
and (5.21) we have

B(v", v") / / cpt—l—ZFk )ou, dzdt + A.

As h — 0, A vanishes and remembering the arguments on weak-* convergence in
Theorem 5.2 yields

(5.22) hm B(v V")) / /cpt )y My E+Z‘Prk o), py) g dx dt.

Now we deal with the compensation term in (5.18) which contains the projection
error,

et == er(vp) = vp — I (v"y),
and in the following we show that the compensation term vanishes as h goes to zero:

(5.23) lim B, el},) = 0.

One can decompose B(v", ell,) as follows:

(5.24) B!, eh) = B (0", e ) + BRg™ (0 el ) + Bso (v", en)
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with the following definitions,

(5.25) B(Res 7 vh Z/ / (Res, eri(v"y)) dz dt,
o) BN =2 / (ol ), (M)} do
-3 / 8K<f<vh> @) (k) ds

Now we need to show that each term in (5.24) vanishes as h — 0.
First, the definition of the H!-projection (5.1) obviously yields

(5.27) Bsc(v",€ell) = 0.
Using the definition of BDG as (5.25) combined with (5.16) and (5.3a) gives

B (0", eg)] < €Y Resg[lv" o — T (0"9) | L)

K,n

(5.28) < ChFF (oL ap) D Res,,

K,n

which vanishes as h goes to zero if &y < 2. This comes from Lemma 4.2 with v = 1+%/.

Moreover for BUE™ | by definition (3.16) and estimates (5.17) and (5.3a), we
obtain

BHE™ (", egn)] < CD " BResy[[v" o = T (0" 9)l| 1, 00)

K,n

(5.29) < ChMY2 0|1 ) (hdz' ZBResH> .

Using Lemma 4.3, we observe that B Tem)('v ,el,) vanishes as h goes to zero.
Combining (5.27), (5.28), and (5.29) one can show (5.23). Then using (5.18),
(5.22), and (5.23) yields

O—hmB(v Hv ®)) / /gpt uyE+Z<prk o), py) g dx dt.

This proves the entropy consistency introduced in (2.2). O

6. Numerical experiments. In this section we present some numerical exper-
iments. First, in section 6.1, we solve a linear system of the one dimensional wave
equation to show that the order of convergence is optimal, and the presence of the
SC term does not ruin it. In this case (and in general for linear symmetrizable sys-
tems) the solution converges to the unique entropy solution. For more discussion on
this claim we refer to Theorem 4.7 in [17]. As examples of more general systems, we
present in section 6.2 a numerical solution of the dam break test case for the shallow
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water equations, as well as solutions of the one dimensional Sod and Lax shock tube
for the Euler equations in section 6.3.

It is worth mentioning that the goal of presenting these results is to show that our
proposed scheme can give acceptable results in practice. This section is not meant to
verify the analytical claim of convergence to emv solutions of one dimensional Euler
or shallow water equations, respectively. The numerical proof of convergence to emv
solution should be considered in some statistical approach; see [23] (and references
therein) or [11].

The Netgen/Ngsolve library [27] has been used for geometry handling and mesh
generation as well as quadrature rules and the evaluation of basis functions. The
nonlinear system obtained from the implicit space-time scheme is solved using a
damped Newton method utilizing the ILU preconditioned GMRES available through
the PETSc library [1].

There are some free parameters in the scheme which need to be selected including
Cé’c%, 1,2, and 6. Unless otherwise mentioned explicitly we set them as CL, = 1 and
6 = 0.5. Since our analytical results indicate that any as > 0 can be chosen, we have
set C%, = 0. The value of o is set to 1.5 in the case of the wave equation and 1.3 in
the rest to be more diffusive. These settings give us acceptable results in most cases.

It should be noted that in the presented figures of the solution we draw the original
solution polynomial elementwise without any additional limitation.

6.1. Wave equation. The wave equation in one dimension can be written in
the following form,

(6.1) hy + cuz =0,
(6.2) us + chy =0,

where c is some constant value. In this case the system is linear and symmetric in its
original form and by choosing the entropy function as U(u) = §(h?+ u?) the entropy
variables would be the same as the conservative variables.

Hence, the entropy conservative flux would be the simple average of the flux values
at the edge and the diffusion operator is set to Rusanov type. In our numerical test
cases the boundary conditions are set to Dirichlet, the wave speed to ¢ = 1, and the
final time to T' = 1. Also the calculation domain is considered as [0,3]. We use two
different initial settings.

6.1.1. Wave equation: Smooth initial data. We consider
(6.3) h(z,0) = sin(27x), u(z,0) = sin(27z)/3.

We solve this for polynomial degrees ¢ = 0,1, 2,3 with and without SC. The results
are presented in Tables 1 and 2. One can observe that the naive DG formulation (i.e.,
without any stabilization) is sufficiently good in this smooth case. Adding the SC
term merely adds some diffusive behavior (in terms of slightly larger error reported
in Table 2), while it does not affect the accuracy of the scheme in terms of rate of
convergence. Asymptotically, we get the optimal order ¢ + 1 in convergence of the
error in the L norm, even in the presence of the SC term.

Only for very coarse meshes and high polynomial degree do we see a significant
contamination of the accuracy (cf. last column of Table 2). With refining the mesh,
however, the order of convergence will be the order of consistency of the scheme, and
the error levels are not significantly compromised by the SC term.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 03/09/19 to 129.2.11.33. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

890 MOHAMMAD ZAKERZADEH AND GEORG MAY

TABLE 1
Convergence result for wave equation, smooth initial data without SC.

q=0 g=1 q=2 q=3
h llellz, Order llellz, Order llellz, Order llellz, Order
1—10 1.869 4.668e-2 8.073e-3 1.997e-4
% 1.597 0.226 | 2.941e-2 0.666 | 2.114e-3  1.933 | 1.079e-4  0.888
i 1.146 0.477 | 6.328e-3  2.217 | 3.306e-4  2.677 | 6.994e-6  3.947
8—10 7.146e-1  0.682 | 1.410e-3  2.165 | 3.758e-5  3.137 | 3.788e-7  4.206
W}o 4.044e-1  0.821 | 3.243e-4  2.121 | 4.344e-6  3.113 | 2.099e-8  4.173
TABLE 2
Convergence result for wave equation, smooth initial data with SC.
q=0 g=1 q=2 q=3
h llellzy Order llellz, Order llell 2, Order llellzy Order
i 1.869 2.538e-1 2.570e-1 1.952e-1
% 1.597 0.226 | 5.862e-2 2.114 | 1.780e-2  3.852 | 1.483e-2  3.718
% 1.146 0.477 | 9.690e-3  2.596 | 6.467e-4  4.782 | 1.784e-5  9.698
8—10 7.146e-1  0.682 | 1.748e-3  2.470 | 4.997e-5 3.694 | 6.120e-7  4.865
Tl'o 4.044e-1  0.821 | 3.537e-4  2.305 | 4.754e-6  3.393 | 2.562e-8  4.578
TABLE 3
Convergence result for wave equation, discontinuous initial data without SC.
q= 0 q= 1 q= 2 q= 3
h llellr, Order llell L, Order llell L, Order llellr, Order
1—10 4.279e-1 1.211e-1 6.241e-2 4.021e-2
% 3.435e-1 0.317 | 7.444e-2 0.702 4.311e-2 0.534 | 3.425e-2 0.231
% 2.554e-1 0.427 | 4.466e-2 0.737 | 2.464e-2 0.807 1.908e-2 0.844
8_10 1.835e-1  0.477 | 2.674e-2  0.740 | 1.429e-2  0.786 | 1.089e-2  0.809
Tl'o 1.304e-1  0.493 | 1.569e-2 0.769 | 8.168e-3  0.807 | 6.157e-3  0.823
TABLE 4
Convergence result for wave equation, discontinuous initial data with SC.
q=0 g=1 q=2 q=3
h llellz, Order llellz, Order llellz, Order llellz, Order
1—10 4.279e-1 1.207e-1 8.421e-2 7.577e-2
% 3.435e-1  0.317 | 7.891e-2  0.613 | 5.518e-2  0.609 | 4.495e-2  0.753
i 2.554e-1  0.427 | 4.628e-2  0.769 | 3.003e-2  0.878 | 2.305e-2  0.963
8—10 1.835e-1  0.477 | 2.732¢-2  0.761 | 1.659e-2  0.856 | 1.252e-2  0.882
W}o 1.304e-1  0.493 | 1.586e-2 0.784 | 9.371e-3  0.824 | 6.813e-3  0.876

6.1.2. Wave equation: Discontinuous initial data. We consider

(1,3), = <15,

(6.4) hwl=o=3 0.0, =>15

Like the smooth case, we solve the problem with different polynomial degree, and both
with and without SC. As we expect, based on Tables 3 and 4, due to the presence of
a discontinuity, the order of convergence cannot be better than 1, while increasing ¢
results in lower error.
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(a) Different ¢, with SC (b) ¢ = 2, with/without SC

FiGc. 1. Wave equation, discontinuous initial data, h = 1/20.
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Fic. 2. Wave equation, discontinuous initial data, ¢ = 2, h = 1/20, effect of two parameters,
ai (left) and 0 (right).

Again, as in the smooth case, the presence of the SC mechanism does not affect
the order of convergence. On the other hand, as Figure 1 shows, while the naive DG
implementation shows lots of oscillations in the solution in the vicinity of discontinu-
ities, using the SC term reduces those oscillations considerably. Moreover, comparing
the result of linear and quadratic elements shows that using higher order polynomials
significantly helps in controlling the overshoot.

The effect of SC parameters a; and 6 is shown in Figure 2. We observe that by
increasing «; and decreasing 6 the solution become less diffusive. This shows that the
extension of the admissible range for a; in our work compared to [17] can make the
method less diffusive.

6.2. Shallow water equations. The shallow water equations which describe
the disturbance propagation in incompressible fluids under the influence of gravity
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sC
No SC
Exact

(a) Different ¢, with SC (b) ¢ = 2, with/without SC

Fi1G. 3. Dam break, height, h = 1/20.

can be written as
(6.5) ht + (hu), =0,

(6.6) (hu); + (mﬂ + %gh2> =0,
xr
where h and u are the depth and the velocity of the water, respectively, and g = 1
is the gravity acceleration. The entropy function in this case is defined as the total
energy U = %(hu2 + gh?). Hence, the corresponding entropy variables and entropy
conservative flux can be set as in [12]. Also we choose Rusanov type for the diffusion
operator of the entropy stable flux.
Moreover, we set the initial condition for the dam break problem as follows:

[(50, <o,
(6.7) (h u)le=o = {(1,0), z>0.

We take the computational domain as [0, 10], with Dirichlet boundary condition,
and the final time is set to 7" = 1. In Figure 3, we present the results with ¢ = 2
with/without SC versus the exact solution calculated by the SWASHES code [6].

The results and their comparison with the exact solution show a good control of
the shock with acceptable overshoot, and the shock is quite sharp.

6.3. Euler equations for polytropic gas. The one dimensional Euler equa-
tions can be written as

(6.9) (pu)e + (pu? + p)z = 0,
(6.10) Ei + (uw(E +p))s =0,

where p, u, and E correspond to density, velocity, and total energy of the gas, re-
spectively. Here p is the pressure of the gas and is defined as p = (y — 1)(F — % pu?),
where + is the adiabatic exponent which is set to 1.4 in all the experiments here.
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(a) Different ¢, with SC (b) ¢ = 2, with/without SC

F1G. 4. Sod shock tube, density, h = 1/20.

Following [19] the entropy function is defined as U(u) = —-£5, where s is the

specific entropy defined as s = Inp — y1In p. The corresponding definitions of entropy
variables and entropy conservative flux f* as well as the diffusion operator are defined
according to [19]. We consider two types of Riemann problems for our numerical test
in the domain [0,10]. The boundary conditions are set to Dirichlet type with the
following initial conditions

(611) (p7u’p)t:0 _ (pLauLapL)a T < 57
(pRauRapR); T > 5,

which we define as the right and left states for the following two cases.

6.3.1. Sod shock tube. Here the initial condition is in the form (6.11) with
the values

(612) (pL,uL,pL) = (1,0, 1), (pR,uR,pR) = (0125,0,01)

The results are presented in Figure 4. We observe that the presented SC mechanism
acts effectively near both shock waves and the contact discontinuity. Our solution
compares well with the results of [17], which are improved by some pressure scaling
as well as SD. Moreover while increasing polynomial degree from ¢ = 0 to ¢ = 1
significantly improves the solution quality, the quadratic polynomial solution is quite
similar to the linear one, and only improves the overshoots near the shock wave.

6.3.2. Lax shock tube. Here the initial condition is in the form (6.11) with
values

(6.13)  (pr,ur,pr) = (0.445,0.698,3.528),  (pr,ur,pr) = (0.5,0,0.571).
Again, comparing results (see Figure 5) with [17] shows that the SC mechanism is

effective in alleviating the oscillations. The general behavior here is similar to the Sod
case, but with larger overshoots due to the stronger shock.
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(a) Different ¢, with SC (b) ¢ = 2, with/without SC

F1G. 5. Lax shock tube, density, h = 1/20.

7. Conclusion. In this work we have shown the capability of the SC mechanism
to ensure the convergence to an emv solution for nonlinear systems of conservation
laws. We followed the framework presented in [17] for SDSC-DG methods, and intro-
duced a stripped-down version by omitting the SD term while retaining the entropy
stability and convergence of the method. Also using super approximation estimates,
we were able to “relax” the scaling in the viscosity and obtain a less diffusive method.
Furthermore, the applicability of the method was presented through numerical exper-
iments.

An improved version of our scheme might consider a dimensionally consistent
formulation of the SC operator. (See [16] for a dimensionally consistent formulation
with an SD term.) This is left for future work.

Appendix A. Proof of Lemmas 4.2 and 4.3. Here we present the proofs of
Lemmas 4.2 and 4.3. Note that by the notation I' we mean an h-dependent constant
I' = ChP, where C is independent of h.

Assuming that (4.1) and (4.4) hold and remembering the definition (3.13), the

residual can be bounded from above as |Res| < C|Vv"|. Consequently one can easily
obtain
(Al) %K < C”vvhHLz(H)'

A.1. Proof of Lemma 4.2.
(i) We split the summation into summations on £~ := {x : [Vv"| 1,(s) > I'} and
k<= {k 1 [|[VU"||1,5) < T} as

(A2) h') Res, =17 <Z%n+ Z%F) =0 + .

KEK™ KERS

We estimate each of the terms I; and I5 separately:
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e Bound on I;: remembering the definition of ¢,; in (3.10) gives

I S CR™ Y e[ Vol 1y + A7 ech?
KEK™ KER>

Ry~ hY—o1to
<O D exl Vo'l + —— Dol V0 I,

y—a1 y—a1+6
(A3) <cC (h 4 ) :

hB h26

where (4.2) is used in the last estimate. L
e Bound on I3: using (A.1l) one can show that Res, < CT holds where
V" 1,(s) < T and consequently

(A.4) I, < Ch+FP (Z 1) < Ch~4RH8,

K,n

where the term h~? stands for the number of all space-time elements in
the domain which is true thanks to the quasi-uniformity condition (3.1).
Considering bounds on I; and I3, yields

(A.5) By Z@K <C (h'y—ozl—ﬁ L py—oatb-28 | h7+5‘d’) .

K,n

For (A.5) to be bounded in regard to h it is required that

(A.6a) y—o1 =20,
(A.6D) y—o1+60—-28>0,
(A.6¢) v+ B—d >0.

If one can find a possible value for (here the only) free parameter /3, then (A.5) is
bounded by the initial condition implied in C' and the diameter of the space-time
domain. Also this bound goes to zero as h — 0 in the case of strict inequality.
Considering (A.6a) and (A.6¢) gives

(A7) d—v<B<y—a,

which implies v > d/Jr%. A similar calculation using (A.6b) and (A.6¢) leads to
the condition v > MUF%_Q. Using the condition on # in (3.11), one can check
that the second condition reduces to the first one, and we only need to satisfy
v > “#"1. This completes the proof of part (i) of Lemma 4.2.

Note that the maximum rate of convergence with respect to h occurs when

s=0= %. For this choice all terms in brackets on the right-hand side of
a1+d,

(A.5) reduce to Y~ 2

We show that we can find a uniform upper bound in the case v = a;. Then the
theorem is obviously true for v > a;.

From (4.3) and the definition of ¢,; in (3.10) we have

h*1Res,|[VU"(|7, g
VO ||Ly00) + 18 T

(A.8)

K,n
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Using the arguments of Lemma 4.2 with v = 6 + a3, we can claim that

(A.9) > h*hfRes, < C

K,n

if 0+ > & 440 e, 0 > d'—a1 This is true by condition (3.11).
Now, one hhould note that

2| Vo2
AL v h B} < h07 2(k) )
( ) Vv HLz( ) = max{ Hv'vhHLz(N) +h?

which can be easily seen by a graphical argument. Using (A.8) and (A.9) com-
bined with (A.10) yields

2|| V||
« h « 0 La(k)
hot E Res, || V" 1,y < ™ E Res,{max{h , ||V'vh||L2 " Y < C.

K,n K,n

The bound C vanishes as h — 0 if v > «;.
A.2. Proof of Lemma 4.3.
Using (4.2), (3.8), and the definition of BRes, (3.16), one can conclude that the

___ 9 .
first and last terms of > BRes, are bounded. For the second term, using the
definition of the entropy conservative flux (3.6) and its consistency yield

") - fl ) = <v’;<,,v’;<+, n) — (e vl_in)
/ FEwh(8) — FE (vl )b
(A.11) z/ 9Zaif’f,(bi(9))d9 [vi]*
0 =1

with coefficients a; € [0, 1] buch that Y7 i=1 a; = 1 and b;(6)s are some values on
the straight line connecting v” % and v h(#). The value v" () is defined by the
parameterization introduced in (3.7). The last identity is the result of the mean
value theorem for a vector-valued function (cf., e.g., [24]).

By assuming the boundedness as in (4.4), (A.11) can be bounded from above by

(A.12) [F*(0") = F(vk ) - m| < Cllvk]*].

The estimate (4.2) combined with (A.12) leads to

(A.13) Z BResi <C,

K,n

and the proof completes with recalling that h > . BRes, <C(X, BRes.)1/2.
The proof proceeds along the same lines as the proof of part (ii) of Lemma 4.2,
by using (4.3) and the uniform bound presented in part (i).

In the proof it is needed to have 8 + ag > %/ which implies 6 > %/ — ag. This is
the requirement on the regularization parameter 6 in (3.11).
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